
8. MAXWELL’S EQUATIONS

So far we have seen the four equations:

 (i) ∇ =.E
1

0ε
ρ (Gauss's law)

(ii) ∇ =.B 0 (no name, just divB equals zero!)

(iii) ∇ × = −E
B∂
∂t

(Faraday's law)

(iv) ∇× = µB J0 (Ampère's law)

that together are almost Maxwell’s equations aside…we need to

include the displacement current.

8.2 Displacement current

Up to now we have written 

∇ =xH J

which would be one of the ‘Maxwell equations’ but there is a term

missing (in fact is was Maxwell himself who derived this term to

‘fix-up’ the set of four Maxwell equations giving the correct

description of EM).



If we take the divergence of both sides of ∇ =xH J we find

∇ ∇ = = ∇. .( xH) J0 (*)

But the Continuity eqn says

∇ = −.J
∂ρ
∂t

for time-varying fields so (*) cannot be correct in general. To correct

things we need to add the time-varying term 
∂ρ
∂t

 to the r.h.s of (*):

∇ ∇ = = ∇. .( xH) J0 +
t

∂ρ
∂

and since ∇ =.D ρ,

∇ ∇ = = ∇ 





. . J
D
t

( xH) 0 +
∂
∂

or,

 ∇ = +xH J
D∂
∂t

div of curl of any vector field is zero
(see vector identity (9) inside front
cover of Griffiths)

‘corrected’ Maxwell
equation for curlH



The time-varying term 
∂
∂
D
t

 is called the displacement current.

The equation

∇ = +xH J
D∂
∂t

tells us that there will be a magnetic field (due to the displacement

current ∂ ∂D t) even when there is no current flow (i.e. when J = 0).

We usually write ∇ = +xH J
D∂
∂t

 in terms of B and E:

∇ = +xH J
D∂
∂t

by recalling B H= µ0  (free space) and D E= ε0  (free space)

∇× = µ + µB J
E

0 0 0ε
∂
∂t



8.2 Maxwell’s Equations in differential form

We can now write the complete set of Maxwell equations, including

the correction term (the displacement current):

(i) ∇ =.E
1

0ε
ρ (Gauss's law)

(ii) ∇ =.B 0 (no name, just divB equals zero!)

(iii) ∇× = −E
B∂
∂t

(Faraday's law)

(iv)    ∇× = µ + µB J
E

0 0 0ε
∂
∂t

Eqns (i) – (iv) tell us how CHARGES produce FIELDS

and the force equation (electric + magnetic force acting on a moving

charge)

F E v x B= +q( )

tells us how FIELDS affect CHARGES which together with the

equation of continuity

∇ = −.J
∂ρ
∂t

(Ampère's law with
 Maxwell's correction)



provide all the mathematical apparatus needed to describe

electromagnetism – that is to solve all problems in classical

electromagnetism on the macroscopic scale.

8.3 Maxwell’s equations in integral form

Maxwell’s equations in integral form perhaps give us a greater

physical insight:

(i) D. ad Qf encS
=∫ ,

(ii) B. ad
S

=∫ 0

(iii) E. l B. ad
d
dt

d
L S

= −∫ ∫

(iv) H. l D. ad I
d
dt

df encL S
= +∫ ∫,

integrate over closed surface S

closed loop L bounding surface S



8.4 Visualization of Maxwell’s equations

(i) Gauss’ law: D. ad Qf encS
=∫ ,  or E. ad

Qtotal
S

=∫ ε0

Lines of E begin on positive charges. E lines exit enclosing volume

τ through surface S. Gauss’ law says the total flux of E leaving

enclosed volume τ is equal to the total charge enclosed by surface S

divided by ε0.

Volume  τ

Surface S bounding
volume τ

+ +
+

+
+

lines of E leaving volume
τ    through surface S

E

E



(ii) ∇ =.B 0 or  B. ad
S

=∫ 0

Lines of magnetic induction B pass through the closed surface S.

The net outward flux (divB) through the surface is zero.

Gauss divergence theorem states, for any ‘well-behaved’ vector field
A,

( )∇ =∫ ∫.A A. ad d
s

τ
τ

(differential
form)

(integral
form)

S

BBBB

B a.d
s

=∫ 0   or ∇ =.B 0

integral of
divA over the
volume τ

integral of flux
through surface S
enclosing volume τ



 (iii) Faraday’s law E. l B. ad
d
dt

d
L S

= −∫ ∫

The emf induced in the loop L defined on surface S is equal to the

rate of change of the magnetic flux through the surface enclosed by

L.

E. l B. ad
d
dt

d
L S

= −∫ ∫

flux through S

emf in loop ≡ vector
integral of electric
field around L

rate of change of magnetic
flux through surface defined
by loop L

B

L

open surface S
(within loop)
fixed
in space

The B-field is changing
giving  a changing flux.
In this case B points in
direction arrowed and is
increasing



Faraday’s law is easy to see (and you’ll recognise it from first

year!) if we take a physical (actual) loop (e.g. of wire):

Permanent magnet moved into loop of wire

provides a changing magnetic flux (the − ∫
d
dt

d
S
B. a term) generating

an emf in the wire (the E. ld
L∫  term; electric field E established the

emf) which deflects the galvanometer.

(iv) H. l D. a J
D

ad I
d
dt

d
t

df encL S S
= + = +



∫ ∫ ∫, .

∂
∂

or, equivalently,

B. l . ad
t

d
L S

= +



∫ ∫µ ε

∂
∂0 0J
E

galvanometer

NS

ε

ε
ε = − =d dt B AΦ Φ .



J
D

+
∂
∂t

L

The term H. l
L

d∫  is equal to the sum

of two contributions linking loop L
(i) the free current J,
(ii) the displacement current ∂ ∂D t

The arrows on the diagram above
give the direction of the free current
J.
If D is downward and increasing or
upward and decreasing the
displacement currentJ DD t= ∂ ∂  is
also in the downward direction


